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Oslo rice pile model is a quenched Edwards-Wilkinson equation

Gunnar Pruessner*
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~Received 14 September 2002; published 19 March 2003!

The Oslo rice pile model is a sandpile-like paradigmatic model of self-organized criticality~SOC!. In this
paper it is shown that the Oslo model is in factexactlya discrete realization of the much studied quenched
Edwards-Wilkinson equation~qEW! @Nattermannet al., J. Phys. II France2, 1483~1992!#. This is possible by
choosing the correct dynamical variable and identifying its equation of motion. It establishes for the first time
an exact link between SOC models and the field of interface growth with quenched disorder. This connection
is obviously very encouraging as it suggests that established theoretical techniques can be brought to bear with
full strength on some of the hitherto elusive problems of SOC.
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The Oslo rice pile model~Oslo model hereafter! was
originally intended to model the relaxation processes in r
rice piles@1#. Meanwhile, it has been subject to many inve
tigations and publications in its own right. The model
defined below supposedly develops into a scale-free s
without the explicit tuning of external parameters, and
therefore regarded as an example of self-organized critica
~SOC! @2#. In fact, contrary to many other ‘‘standard’’ mod
els of SOC@3–6#, it shows a reliable and consistent~simple!
scaling behavior and is robust against certain changes in
details of the dynamics@7–9#. The most prominent observ
able in the model, the avalanche sizes, is governed by a
probability distributionP(s) which obeys simple scaling,

P~s!5s2tG~s/s0! and s05LD, ~1!

where L denotes the system size andt and D are critical
exponents, consistently reported to bet51.55(10) andD
52.25(10) @7–12#. These two exponents are related
D(22t)51 @10,11#, which can be proven easily given th
the first moment ofP(s), ^s&, scales likeL.

In the following the model is defined, the relevant d
namical variable extracted and its equation of motion
rived, which turns out to be a discretized quenched Edwa
Wilkinson ~qEW! equation. By analyzing the essenti
characteristics of the model on the lattice, such as unique
of the solution and symmetries, it is then possible to c
struct the continuum theory, which can subsequently be
amined using standard methods.

The model@10# is defined on a one-dimensional grid
size L, where each sitei 51¯L has slopezi and critical
slopezi

cP$1,2%. Starting from an initial configuration with
zi50 andzi

c random everywhere, the model evolves acco
ing to the following update rules:~1! ~Driving! Increasez1

by one.~2! ~Toppling! If there is ani with zi.zi
c decreasezi

by 2 and increase its nearest neighbors by one,zi 61→zi 61

11, provided that 1< i 61<L. A new zi
c is chosen at ran-

dom, 1 with probabilityp and 2 with probabilityq[12p.
~3! Repeat the second step untilzi<zi

c everywhere. Then
proceed with the first step. The order of updates is irrelev
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in this model and the original definition does not fix it e
plicitly. Therefore the microscopic~fast! timescale isa priori
undefined.

The avalanche sizes is defined as the number of charge
i.e., apart from boundary effects, twice the number of tim
the second rule is applied between two consecutive app
tions of the first rule. For convenience the model is dissi
tive on both boundaries, where one of the two ‘‘units’’ lo
by the boundary site during toppling leaves the system.

A few years ago Paczuski and Boettcher translated
Oslo model into the language of interfaces in random me
@11#. However, the evolution of the dynamical variab
H(x,t), which is the total number of topplings of sitex, was
given by] tH5u„]x

2H2h(x,H)…, where] t is defined in dis-
crete time, i.e.,] tH[H(x,t11)2H(x,t) and ]x

2 is the lat-
tice Laplacian, so thatx is actually an index. The last term
h(x,H) represents a quenched noise. The Heavisideu func-
tion makes this equation of motion highly nonlinear and a
lytically almost intractable@13#. Paczuski and Boettche
have already conjectured that the Oslo model is in the sa
universality class as qEW@14#. More recently, Alava has
suggested that certain other sandpile models are describe
qEW @15#. It is, however, important to realize that no rigo
ous and exact link has so far been established between
models and the qEW equation.

The crucial step to make this correspondence exact i
identify the proper dynamical variable. It is found in th
form of the number of times a site has been charged~i.e.,
received a unit from a neighbor during a toppling or by e
ternal drive, see below! h(x,t), wherex andt are discrete for
the time being. There is a simple functional relation betwe
h(x,t) andH(x,t), which can be obtained as follows: Eac
site can be in one of three stable configurations,ziP0,1,2.
When a site receives a unit from a neighbor, it changes s
as shown in Fig. 1. Charging a site in state 0 necessa
leads to state 1 without toppling and the specific value ofzi

c

is completely irrelevant at this stage. Similar for state 2: I
site receives a charge in this state, itszi

c must be 2 and it
must topple. The only point where the value ofzi

c actually
matters, is in state 1, therefore it can be effectively chose
random when necessary, so that the site topples with p
ability p ~according to the probability of havingzi

c51) or
©2003 The American Physical Society01-1
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increases to 2 with probabilityq ~see Fig. 1!. It is immedi-
ately clear that any even number of charges, saym52n,
starting fromzi51 leads to state 1 again withn topplings.
An odd number of charges, saym52n11, leads either ton
topplings and state 2 orn11 topplings and state 0. This i
illustrated in Fig. 1: Them charges lead tom steps along the
arrows. Whenever one moves left, the site topples.

In order to write a functional relation betweenh(x,t) and
H(x,t), the randomness in the decision of moving to the l
or to the right from state 1 must be quenched inh(x,t), i.e.,
it is not allowed to change unlessh(x,t) changes. This can
be summarized as

H~x,t11!5
1

2
@h~x,t !1h„x,h~x,t !…#, ~2!

whereh is 0 wheneverh(x,t) is even, corresponding to sta
1. If h(x,t) is odd, h is either 1~with probability p, state
zi50) or 21(zi52). Every sequence ofh(x,h) values
maps uniquely to a sequence ofzi

c and vice versa. The equa
tion above can easily be transformed to comply to any ini
configuration, especially tozi(t50)[0. Essentially, it is~2!,
which makes the exact identification of the Oslo model a
qEW possible.

The final equation is derived by noting that obvious
h(x,t)5H(x21,t)1H(x11,t) with appropriately chosen
boundary conditions~BC’s! ~see below!, so that using the
short-hand notationh65h(x61,t) and h65h(x61,h6)
the equation of motion is

h~x,t11!2h~x,t !5
1

2
~h222h~x,t !1h11h11h2!,

~3!

which is theexact representation of the Oslo model as d
fined above, captured in a single equation. Its differen
form is accordingly

] th~x,t !5
1

2
]x

2h~x,t !1S 11
1

2

d2

dx2Dh„x,h~x,t !…. ~4!

The right hand BC ish(x5L11,t)[0 @andh(x5L,t)[0 in
the continuum#, while the left hand BC provides the drivin
via h(x50,t)52E(t), E(t) being the total number of initia
seeds~step 1 above! at time t. These seeds arrive at sitex
51 via the Laplacian. In the continuum, the simplest drive
E(t)5vt with v a driving velocity andt the microscopic
time. Together with the BC’s, Eq.~4! or the generalized form

FIG. 1. Each site can be in one of three states and cha
stepwise between them, whenever it receives a charge. The l
indicate the probability of the move and whether it entails a t
pling.
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] th~x,t !5k]x
2h~x,t !1gS 11l

d2

dx2Dh„x,h~x,t !…, ~5!

where the correlator ofh is now normalized, i.e.,
* dx* dh^hh&51, describes the movement of an elas
band over a rough surface@16# pulled by a transverse forc
acting at one end point only. Below it is shown that thel
term disappears in the continuum, establishing thefirst rig-
orous identificationof the Oslo model and the qEW equa
tion. The same equation with different properties of the no
term and/or different BC’s applies to other models, such
the Bak-Tang-Wiesenfeld~BTW! model @17#, fixed energy
sandpiles~for example@18#! or the tilted sandpile@19#. Hav-
ing identified the relevant dynamical variableh, the effect of
modifications of the dynamical rules of the Oslo model, su
as @7–9#, can be understood.

The equation above exemplifies a general ‘‘trick’’@29# to
get rid of u functions in equations of motion—they ofte
appear in descriptions of sandpile-like systems~for example
@13#!: One simply replacesu(h2hc) by h1h(h) with an
appropriately chosen sawtooth likeh. This does not neces
sarily simplify the problem, unless there is already
quenched noise present in the system. In this case theu turns
into a correlation inh. This is highly remarkable from the
point of view of SOC, because the presence of ‘‘threshold
is usually expected to be a crucial ingredient of SO
@2,17,20#. Moreover, the correlations inh, which are of fun-
damental significance in interface models@14,21# and have
been neglected in former mappings, now arise naturally fr
the dynamical description of the model.

In order to construct the proper continuum theory, it
worthwhile to consider the formal solution of Eq.~5!. It will
turn out later thatE(t)5vt is sufficiently general, so that i
makes sense to definev(x)[v(L2x)/L and

h~x,t !52v~x!t1P3~x!1z~x,t ! ~6!

in order to homogenize the BC’s.P3(x) is a third-order poly-
nomial only present to cancel the first term in th
differential equation, i.e.,k]x

2P352v(x), with roots at
x50 andx5L. Therefore] tz5k]x

2z1ghl„x,h(x,t)… with
homogenous BC’s. The term hl„x,h(x,t)…[„1
1l(d2/dx2)…h„x,h(x,t)… is actually a functional ofh. The
initial condition of z(x,t) is not z(x,t50)[0 as forh, be-
cause of the data shift above. But due to the homogen
BC’s any initial condition decays, so that the initial source
accounting forz(x,t50)52P3(x), can be ignored. Then
the formal solution isz(x,t)5(n51

` zn(t)sin(knx) with

zn~ t !5
2g

L E
0

t

dt8E
0

L

dx8hl„x8,2v~x!t1z~x8,t !…

3sin~knx!exp„2kn
2k~ t2t8!… ~7!

andkn5pn/L.
According to Eq.~6!, the tilt of h(x,t) in x increases in

time. Assuming stationarity of the relevant statistical prop
ties ~especially avalanches as defined below!, this requires
the solution to be invariant under tilt, which is also known
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Galilean invariance@22#: h85h1ax must produce the sam
statistics ash, which entailsh(x,a1ax) to be equally likely
as h(x,a), so that ^h(x,a1ax)h(x8,a81ax8)&
5^h(x,a)h(x8,a8)&. But assuming the standard form@14#
^h(x,a)h(x8,a8)&5D i(x2x8)D'(a2a8), the correlator
obeys for anyx2x8 whereD i(x2x8) is finite, D'(a2a8)
5D'„a2a81a(x2x8)…. This holds for anya, so if D i(x
2x8) was finite for anyx2x8Þ0, D' would be bound to be
a constant. This is impossible, becauseD' must be nonvan-
ishing somewhere and normalizable, so thatD i(x2x8) must
vanish for any finitex2x8, i.e., it mustbe ad function.

Next it can be shown that the Oslo model obeys Midd
ton’s no-passing@23#. For lÞ0 this will lead to a constrain
on the noise which is incompatible with thed correlation of
D i in the continuum, so thatl must vanish in the continuum
Defining a partial orderingf for two configurations
h1(t1 ,x) and h2(t2 ,x) of the interfaces ash1(t1 ,x)
fh2(t2 ,x)⇔;xP@0,L#h1(t1 ,x)>h2(t2 ,x), one has to show
that this order is preserved under the dynamics@24#. With the
‘‘external field’’ being the BC’sE1(t) andE2(t), one shows
that if h1(t0 ,x)fh2(t0 ,x) for a given t0 @which entails
E1(t0)>E2(t0)] the interfaces can never ‘‘overtake’’ eac
other att>t0 . By assuming the opposite, one only needs
prove that where the two interfaces ‘‘touch’’ for the fir
time, x0 , the velocity ofh1 is higher or equal to the velocity
of h2 . For the model on the lattice~3!, this is equivalent to

h1
11h1

11h1
21h1

2>h2
11h2

11h2
21h2

2 ~8!

using the same notation as in Eq.~3!. In the original discrete
model, condition~8! follows immediately fromh(x,h)1h
being a monotonically increasing function inh for anyx. For
the continuum equation~5! the corresponding calculatio
gives

lg]hh~x,h!>2k ~9!

assuming that (d2/dx2)h5]x
2h1]xh]x]hh1]xh]h]xh

1]x
2h]hh1(]xh)2]h

2h and that the interface is smooth inx0

such that ]xh1(x0 ,t)5]xh2(x0 ,t) and ]x
2h1(x0 ,t)

.]x
2h2(x0 ,t). For a noise with divergent width,D i(x)

5d(x), Eq. ~9! cannot hold for anylÞ0, i.e., a nonvanish-
ing l destroys no-passing. However, no-passing must be
garded as a crucial feature, as it ensures the asymp
uniqueness of the configuration and is reminiscent of
irrelevance of the order of updates in the original model,
that l50 is a necessary condition for the equivalence of
continuum and discrete model.

This is physically justified: Assuming a smoothh, in the
continuum approximation of Eq.~3!, l becomes proportiona
to the square of the lattice spacing and therefore vanishe
the continuum limit.

Keeping thel term nevertheless, a naı¨ve scaling analysis
shows that it is irrelevant. Moreover, its Fourier transform
Eq. ~7! produces only a term2glkn

2, because of the tota
derivative inhl . This can be absorbed into the bare prop
gator of a perturbative expansion in the style of@14,21# in
the form 2g(12lkn

2)/L(kkn
21 iv), leading possibly to an

ultraviolet divergence. Apart from that, the terms obtain
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for an renormalization group treatment are structurally
same as in@21# as calculations show~details to be published
later!. The only differences are due to the peculiar way
driving the interface@i.e., the term 2v(x), which is a mean
velocity in ~6!, but also drives the model by moving th
quenched noise in~7!# and the nonconservative nature of th
interface~which makes sense only for a finite system! lead-
ing to the homogenous BC’s and therefore to the sin(knx)
rather than exp(2iknx) terms. In turn, the standard qEW prob
lem @14# corresponds to an Oslo model with periodic BC
and continuous, uniform drive.

Expandingh in powers ofzn , the first two terms ofzn(v)
~the Fourier transform of~7! in t! are

zn~v!5
2g~12lkn

2!

L~kkn
21 iv! F E0

L

dx8ĥS x8,
v

2v~x8! D sin~knx8!

2v~x8!

1E
0

L

dx8E
2`

`

dq(
m51

`

ĥ~x8,q!
iq sin~kmx8!

A2p

3zm„v22v~x8!q…sin~knx8!G ,

whereĥ(x,q) is the Fourier transform ofh(x,h) in h.
The definition of the avalanche sizes in the continuum is

the area between the interface configurations at two timet1

andt2 , s5*0
Ldx@h(x,t2)2h(x,t1)#, so that̂ s&5vDtL with

Dt[t22t1 , becausê z(x,t)& is expected to be asymptot
cally independent oft, as a nonvanishing limt→`]^z(x,t)&
with homogenous BC’s would require support for a diverge
curvature of the interface. ChoosingDh[Dtv constant for
different system sizesL then preserves the property^s&}L.

Due to the asymptotic uniqueness of the solution the s
tem can either be driven in jumps ofDh separated by suffi-

FIG. 2. Comparison of a data collapse according to~1! for sys-
tem sizes betweenL5128 andL5512 and the continuous and th
discrete realization of the model. The same value ofp51.55 col-
lapses all curves within each model onto its scaling function. Du
the omission of the nonuniversal constants Eq.~1! the two resulting
curves are shifted relative to each other.
1-3
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ciently long times, or driven very slowly taking ‘‘snapshots
of the configuration in order to calculates.

The model possesses two characteristic timescales: O
the diffusive timescalet0[L2/k, the other one is the non
trivial scale due to noise and drive,tg[g2/(v3L). One has to
maintain a sufficiently largeDt to prevent distinct ava-
lanches from merging, otherwise the central limit theor
would turnP(s) into a Gaussian. The SOC limit is usual
identified with v→0, which makes sense only in the pre
ence of an intrinsic scale forv. The only combination of
parameters~k, g andL, but l50! which provides a ‘‘natural
velocity’’ is vg[(g2k)1/3/L. The SOC conditionv→0 is
therefore already met byv!vg}L21, which is however, not
sufficient. According to Ref.@11# Dt@Lz with z'1.42, so
thatDh5const. entailsv!L2z, which therefore seems to b
the correct condition for SOC, even though the microsco
timestep in@11# is defined as a parallel update, which is n
exactly~3!.

Preliminary numerical studies indeed suggest that~5! with
l50 is a valid continuous description of the Oslo mod
Fig. 2 compares a scaling collapse for different system s
of the continuous model~with l50! and the original, dis-
crete one. The best collapse is obtained byt51.55 for both
models. The scaling lawD511x @11# remains applicable a
long as the two configurations att1 andt2 are correlated. It is
,

e
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,
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in perfect agreement with numerical results@25,26# for the
qEW model@30#.

In conclusion, the Oslo model has been reduced t
quenched Edwards-Wilkinson equation. In the continu
limit the qEW becomes theexactequation of motion for the
Oslo model. This not only makes it possible to approach
exponents of an SOC-model analytically, but also gives
sight into the nature of avalanche like behavior and the re
tion between SOC and other theories of critical phenome
It provides the perfect test bed for analytical methods p
posed for SOC.

The established relationship is presently being pursue
order to develop a direct approach to the critical exponent,
clear up the roˆle of the noise and clarify the relation betwee
noise and drive. The framework used here is also promis
for other models, such as the BTW model@17#, various other
sandpile models@18,19# and the Zhang model@27#.
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