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The Oslo rice pile model is a sandpile-like paradigmatic model of self-organized criti€8@@). In this
paper it is shown that the Oslo model is in faotactlya discrete realization of the much studied quenched
Edwards-Wilkinson equatio@EW) [Nattermanret al, J. Phys. Il Franc®, 1483(1992]. This is possible by
choosing the correct dynamical variable and identifying its equation of motion. It establishes for the first time
an exact link between SOC models and the field of interface growth with quenched disorder. This connection
is obviously very encouraging as it suggests that established theoretical techniques can be brought to bear with
full strength on some of the hitherto elusive problems of SOC.
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The Oslo rice pile modelOslo model hereaftgrwas in this model and the original definition does not fix it ex-
originally intended to model the relaxation processes in reaplicitly. Therefore the microscopidast) timescale isa priori
rice piles[1]. Meanwhile, it has been subject to many inves-undefined.
tigations and publications in its own right. The model as The avalanche sizgis defined as the number of charges,
defined below supposedly develops into a scale-free stafg., apart from boundary effects, twice the number of times
without the explicit tuning of external parameters, and isthe second rule is applied between two consecutive applica-
therefore regarded as an example of self-organized criticalityions of the first rule. For convenience the model is dissipa-
(SOQ [2]. In fact, contrary to many other “standard” mod- +{jye on both boundaries, where one of the two “units” lost
els of SOC[3—6], it shows a reliable and consistestmple the boundary site during toppling leaves the system.

b
scaling behavior and is robust against certain changes in theyA few years ago Paczuski and Boettcher translated the
details of the dynamicE7—9]. The most prominent observ- Oslo model into the language of interfaces in random media

able in the model, the avalanche sigeis governed by a [11]. However, the evolution of the dynamical variable
probability distribution”(s) which obeys simple scaling, H(x.t), which is the total number of topplings of skewas

P(s)=s""G(slsy) and sy=LP, (1) given bydH= 6((9>2<H— 7n(x,H)), whered, is defined in dis-

. - crete time, i.e.gH=H(x,t+1)—H(x,t) and (95 is the lat-
where L denotes the system size amdand D are critical  tice Laplacian, so that is actually an index. The last term
exponents, consistently reported to be1.55(10) andD  ,,(x H) represents a quenched noise. The Heavigitlenc-
=2.25(10) [7-12. These two exponents are related bytjon makes this equation of motion highly nonlinear and ana-
D(2-7)=1[10,11), which can be proven easily given that |ytically almost intractable[13]. Paczuski and Boettcher
the first moment of?(s), (s), scales likeL. have already conjectured that the Oslo model is in the same

In the fO”OWing the model is deﬁned, the relevant dy' universa”ty class as qEV[n_4] More r'ecen“y7 Alava has
namical variable extracted and its equation of motion desyggested that certain other sandpile models are described by
rived, which turns out to be a discretized quenChed Edward%EW [15] It is, however, important to realize that no rigor-
Wilkinson (qEW) equation. By analyzing the essential gys and exact link has so far been established between SOC
characteristics of the model on the lattice, such as uniqueneggodels and the gEW equation.
of the solution and symmetries, it is then possible to con- The crucial step to make this correspondence exact is to
struct the continuum theory, which can subsequently be eXgentify the proper dynamical variable. It is found in the
amined using standard methods. form of the number of times a site has been chargjed,

The model[10] is defined on a one-dimensional grid of received a unit from a neighbor during a toppling or by ex-
size L, where each site=1---L has slopez; and critical  ternal drive, see beloyh(x,t), wherex andt are discrete for
slopeze{1,2. Starting from an initial configuration with the time being. There is a simple functional relation between
z,=0 andz random everywhere, the model evolves accord-(x,t) andH(x,t), which can be obtained as follows: Each
ing to the following update ruleq1) (Driving) Increasez; site can be in one of three stable configurations; 0,1,2.
by one.(2) (Toppling If there is ani with z;>z decrease; When a site receives a unit from a neighbor, it changes state
by 2 and increase its nearest neighbors by ane,—z.; as shown in Fig. 1. Charging a site in state 0 necessarily
+1, provided that Ei=1<L. A new z is chosen at ran- leads to state 1 without toppling and the specific value of
dom, 1 with probabilityp and 2 with probabilityg=1—p. is completely irrelevant at this stage. Similar for state 2: If a
(3) Repeat the second step urj<z® everywhere. Then site receives a charge in this state, zflsmust be 2 and it
proceed with the first step. The order of updates is irrelevantust topple. The only point where the value zifactually

matters, is in state 1, therefore it can be effectively chosen at
random when necessary, so that the site topples with prob-
*Electronic address: gunnar.pruessner@physics.org ability p (according to the probability of having’=1) or
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d2

ah(x,t)=kd2h(x,t)+g| 1+\ FX) n(x,h(x,1)), (5)

where the correlator ofn is now normalized, i.e.,

FIG. 1. Each site can be in one of three states and changesdx[ dh(»#7)=1, describes the movement of an elastic
stepwise between them, whenever it receives a charge. The labgland over a rough surfadé6] pulled by a transverse force
inf:licate the probability of the move and whether it entails a tOp'aCting at one end point only. Below it is shown that the
pling. term disappears in the continuum, establishingftre: rig-

orous identificationof the Oslo model and the gEW equa-

increases to 2 with probability (see Fig. 1 It is immedi-  tion. The same equation with different properties of the noise
ately clear that any even number of charges, s&y2n,  term and/or different BC’s applies to other models, such as
starting fromz;=1 leads to state 1 again withtopplings. the Bak-Tang-Wiesenfeld8TW) model [17], fixed energy
An odd number of charges, say=2n+1, leads either to#  sandpilegfor example[18]) or the tilted sandpil¢19]. Hav-
topplings and state 2 ar+ 1 topplings and state 0. This is ing identified the relevant dynamical varialiiethe effect of
illustrated in Fig. 1: Then charges lead ten steps along the  modifications of the dynamical rules of the Oslo model, such
arrows. Whenever one moves left, the site topples. as[7-9], can be understood.

In order to write a functional relation betweélx,t) and The equation above exemplifies a general “tri¢9] to
H(x,t), the randomness in the decision of moving to the leftget rid of @ functions in equations of motion—they often
or to the right from state 1 must be quenchedh(w,t), i.e.,  appear in descriptions of sandpile-like syste(fios example
it is not allowed to change unle$gx,t) changes. This can [13]): One simply replace®(h—h.) by h+ 5(h) with an
be summarized as appropriately chosen sawtooth likg This does not neces-

sarily simplify the problem, unless there is already a
1 guenched noise present in the system. In this casé timns
H(x,t+1)=5[h(x,H) + 7(x,h(x,)], (2)  into a correlation inz. This is highly remarkable from the
point of view of SOC, because the presence of “thresholds”
. . . is usually expected to be a crucial ingredient of SOC
wherez is O_Wheneveh(x,_t) IS even, correspo_n_dmg to state [2,17,20. Moreover, the correlations ip, which are of fun-
1. 1f h(x.t) is odd, » is either 1(with probability p, state  jamental significance in interface modgist, 21 and have
z=0) or —1(z=2). Every sequence of(x,h) values  poen neglected in former mappings, now arise naturally from
maps uniquely to a sequencezfand vice versa. The equa- the dynamical description of the model.

tion above can easily be transformed to comply to any initial |, order to construct the proper continuum theory, it is

configuration, especially tg(t=0)=0. Essentially, iti92),  \orthwhile to consider the formal solution of E). It will
which makes the exact identification of the Oslo model andyp out later thaE(t)=vt is sufficiently general, so that it

QEW possible. _ _ _ makes sense to defindx)=v(L—x)/L and
The final equation is derived by noting that obviously
h(x,t)=H(x—1t)+H(x+1t) with appropriately chosen h(x,t)=2v(x)t+ P3(x) +z(x,t) (6)

boundary condition§BC’s) (see below, so that using the

short-hand notatiorh®*=h(x*1t) and ™= »n(x+1h~) in order to homogenize the BC'B5(X) is a third-order poly-

the equation of motion is nomial only present to cancel the first term in the
differential equation, i.e.,kd>P3=2v(x), with roots at

1 x=0 andx=L. Therefored,z= kd2z+gn,(x,h(x,t)) with
h(x,t+1)=h(x,)=7(h"=2h(x,) +h"+ 7" +2"), homogenous BC's. The term #7,(x,h(x,t))=(1
@)  +A(d¥dx?)n(x,h(x,t)) is actually a functional oh. The

initial condition of z(x,t) is notz(x,t=0)=0 as forh, be-

which is theexactrepresentation of the Oslo model as de-cause of the data shift above. But due to the homogenous

fined above, captured in a single equation. Its differentiaPC’s any initial condition decays, so that thg initial sources,
form is accordingly accounting forz(x,t=0)=—P3(x), can be ignored. Then

the formal solution iz(x,t) =2,_,z,(t)sink.x) with
2

1d
4552 7(x,h(x,t)). (4

1
ah(x,t)= 5 dzh(x,t) + 0

2
zn(t)zrgﬂdt’f:dx’ X' 20(X)t+2z(x',t))

The right hand BC isi(x=L+1t)=0 [andh(x=L,t)=0 in X sin(kyx)exp(— K2k (t—t")) 7)
the continuun, while the left hand BC provides the driving

via h(x=0.)=2E(t), E(t) being the total number of initial andk,=wn/L.

seeds(step 1 aboveat timet. These seeds arrive at site According to Eq.(6), the tilt of h(x,t) in X increases in
=1 via the Laplacian. In the continuum, the simplest drive istime. Assuming stationarity of the relevant statistical proper-
E(t)=vt with v a driving velocity andt the microscopic ties (especially avalanches as defined belothis requires
time. Together with the BC'’s, Ed@4) or the generalized form the solution to be invariant under tilt, which is also known as
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Galilean invarianc¢22]: h’ =h+ ax must produce the same for an renormalization group treatment are structurally the
statistics a$, which entailsy(x,a+ ax) to be equally likely same as ifi21] as calculations showdetails to be published
as 7(x,a), so that (p(x,a+tax)np(x’,a’"+ax’)) laten. The only differences are due to the peculiar way of
=(n(x,a)n(x’,a’")). But assuming the standard forh4]  driving the interfacdi.e., the term 2(x), which is a mean
(n(x,@)n(x",a"))=A,(x=x")A, (a—a’), the correlator velocity in (6), but also drives the model by moving the
obeys for anyx—x' whereA (x—x") is finite, A, (a—a’) guenched noise ifi7)] and the nonconservative nature of the
=A, (a—a’'+a(x—x")). This holds for anya, so if A;(x interface(which makes sense only for a finite sysjelead-
—x") was finite for anyx—x’#0, A, would be bound to be ing to the homogenous BC’s and therefore to the kgi)(
a constant. This is impossible, because must be nonvan- rather than exp(R.x) terms. In turn, the standard gEW prob-
ishing somewhere and normalizable, so thatx—x’) must  lem [14] corresponds to an Oslo model with periodic BC's
vanish for any finitex—x’, i.e., it mustbe aé function. and continuous, uniform drive.

Next it can be shown that the Oslo model obeys Middle- Expanding» in powers ofz,, the first two terms of,(w)
A, in the continuum, so that must vanish in the continuum. 2g(1-\k7)
Defining a partial ordering> for two configurations Zn(@)= L(kk2+iw)

L ° o iq sin(kpx")

that this order is preserved under the dynarf@zg. With the +f dX'f dg> 7(x',q) ———
“external field” being the BC'sE;(t) andE,(t), one shows 0 ceomet Vam
other att=t,. By assuming the opposite, one only needs to
prove that where the two interfaces “touch” for the first

ton’s no-passing23]. For A0 this will lead to a constraint (the Fourier transform of7) in t) are
w
h,(t{,x) and hy(t,,x) of the interfaces ash;(t;,x)
that if hy(ty,x)>=hy(ty,x) for a giventy [which entails
time, xo, the velocity ofh, is higher or equal to the velocity Where#(x,q) is the Fourier transform ofy(x,h) in h.

sin(k,x")
2v(x")

!

X 20 (x)

on the noise which is incompatible with tl#ecorrelation of
L
f dx’ 7
0
Zhy(t2,X) = Vycroihi(ts, x)=hy(t2,X), one has to show
E1(tg)=E,(tg)] the interfaces can never “overtake” each X zp(w—2v(x")q)sin(k,x")

of h,. For the model on the latticé), this is equivalentto  The definition of the avalanche sizén the continuum is
the area between the interface configurations at two times
hi+ 7 +hi+ 5, =hy+75 +h, +7, (8)  andty, s=[gdx[h(x,t;) —h(x,t1)], so that/s)=vAtL with

At=t,—t,, becaus€z(x,t)) is expected to be asymptoti-
using the same notation as in E§). In the original discrete cally independent of, as a nonvanishing lim,..d(z(x,t))
model, condition(8) follows immediately from#(x,h)+h  with homogenous BC’s would require support for a divergent
being a monotonically increasing functionfirfor anyx. For  curvature of the interface. Choosidgh=Atv constant for
the continuum equatiort5) the corresponding calculation different system sizek then preserves the propeitg) L.
gives Due to the asymptotic uniqueness of the solution the sys-

tem can either be driven in jumps dh separated by suffi-
Agdpn(x,h)=—«k 9

assuming that d¥dx?) =029+ dhdydnn+ dxhdndyn 10" |

+32hdnn+ (d¢h)?32 7 and that the interface is smoothxg . Wﬂf‘”‘\
such  that dyhy(Xo,t)=dyha(Xo,t) and  32hy(Xo.t) W discrete model \
> 3%hy(xo,t). For a noise with divergent widthA(x) 107 | \\
=48(x), Eqg.(9) cannot hold for an\#0, i.e., a nonvanish-
ing A destroys no-passing. However, no-passing must be rex,

garded as a crucial feature, as it ensures the asymptotii® 102 | \
uniqueness of the configuration and is reminiscent of the ‘
irrelevance of the order of updates in the original model, so

thatA=0 is a necessary condition for the equivalence of the , continuous madel & §

continuum and discrete model. 107 ¢ ) E
This is physically justified: Assuming a smootf in the @\

continuum approximation of E{3), A becomes proportional , \

to the square of the lattice spacing and therefore vanishes it 10 107 P = = ey 10

the continuum limit.
Keeping the\ term nevertheless, a va scaling analysis
shows that it is irrelevant. Moreover, its Fourier transform in FIG. 2. Comparison of a data collapse accordingiofor sys-

Eq. (7) produces only a term- grky, because of the total o sjzes between=128 andL =512 and the continuous and the
derivative inz, . This can be absorbed into the bare propa-giscrete realization of the model. The same valuersf1.55 col-
gator of a perturbative expansion in the style[d4,21 in  |apses all curves within each model onto its scaling function. Due to
the form 29(1—\k2)/L(kk3+iw), leading possibly to an the omission of the nonuniversal constants @gthe two resulting
ultraviolet divergence. Apart from that, the terms obtainedcurves are shifted relative to each other.

s/s,
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ciently long times, or driven very slowly taking “snapshots” in perfect agreement with numerical resulg5,2€ for the
of the configuration in order to calculase gEW model[30].

The model possesses two characteristic timescales: One is In conclusion, the Oslo model has been reduced to a
the diffusive timescalé,=L?/«, the other one is the non- quenched Edwards-Wilkinson equation. In the continuum
trivial scale due to noise and drivig=g?/(v°L). One hasto limit the gEW becomes thexactequation of motion for the
maintain a sufficiently largeAt to prevent distinct ava- Oslo model. This not only makes it possible to approach the
lanches from merging, otherwise the central limit theoremexponents of an SOC-model analytically, but also gives in-
would turn’P(s) into a Gaussian. The SOC limit is usually sjght into the nature of avalanche like behavior and the rela-
identified withv —0, which makes sense only in the pres-tjon petween SOC and other theories of critical phenomena.

ence of an intrinsic scale for. The only combination of ¢ provides the perfect test bed for analytical methods pro-
parametergx, g andL, butA=0) which provides a “natural posed for SOC.

velocity” is vy=(g%«)*¥L. The SOC conditiorv—0 is

_1 . .
therefore already met hy<vgoL ™7, Wh;Ch is however, not  ,rder to develop a direct approach to the critical exporent
sufficient. According to Re_fgll] At>L* with z~1.42, S0 (jear up the Tte of the noise and clarify the relation between
thatAh=const. entaily <L "*, which therefore seems to be ise and drive. The framework used here is also promising

the correct condition for SOC, even though the microscopigg, other models, such as the BTW mofi&¥], various other
timestep in[11] is defined as a parallel update, which is Not sandpile model§18,19 and the Zhang modéR7].
exactly(3). '

Preliminary numerical studies indeed suggest (Batvith The author wishes to thank Nicholas R. Moloney for
A=0 is a valid continuous description of the Oslo model: proofreading, Henrik J. Jensen for suggesting the problem
Fig. 2 compares a scaling collapse for different system sizeand for very helpful discussions, as well as Alvin Chua and
of the continuous modelwith A=0) and the original, dis- Kim Christensen for presenting and discussing their work
crete one. The best collapse is obtainedrl.55 for both  [28] prior to publication. The author gratefully acknowledges
models. The scaling la® =1+ y [11] remains applicable as the support of the EPSRC and the NSF during the 2001
long as the two configurations atandt, are correlated. Itis Boulder School for Condensed Matter and Material Physics.

The established relationship is presently being pursued in
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